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STABILITY OF A CYLINDRICAL SHELL IN A STRATIFIED FLOW* 

A.YA. TSIONSKII 

Analysis of the Kelvin stability of a horizontal plane flow of two fluid 

layers of different densities and one moving relative to the other is 

extended to the case of longitudinal coaxial flow of a two-layered fluid 
within a circular cylindrical shell. Ii is shown that the loss of 
stability of the whole system sets in for low velocities of the layer 
motion, one relative to the other. A comparison is made with classical 
flutter for which the flow is not stratified. 

1. We consider the motion of a thin, elastic, infinitely long circular cylindrical shell 
subjected to perturbations of an internal longitudinal potential flow of a two-layered ideal 
incompressible fluid. The layer interface has the shape of a coaxial circular cylindrical 
surface in the unperturbed state. The fluid flow perturbations are considered to be suf- 
ficiently small SO that their squares and higher powers can be neglected. Equations of the 
bending theory of shells are used neglecting tangential inertial forces /l/. 

By virtue of the axial symmetry of the shell-fluid system, we separate the circumferentia 
coordinate and we obtain for the n-th circumferential mode of the potentials of the perturbed 
layer velocities and the shell displacements 
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Here 5 and r are the longitudinal and radial coordinates of a cylindrical coordinate 

system coupled to the axis of the shell-fluid system cps,Ps is the potential of the velocity 

perturbations and the appropriate pressure for the outer (s= 1) and inner (J= 2) fluid layers, 

%, h% P are the radius, thickness, and density of the shell material, D is the cylindrical 

stiffness, a is the shell thin-walledness parameter, pas, & are the fluid layer density and 

velocity for unperturbed motion, w' are the shell normal displacements (s- 1, r= R,) and the 

layer interface boundary (s= 2,r- R,) respectively. 

2. We shall seek the solution of the problem for the shell, the potential 'ps, and the 

pressure pz in the class of longitudinally propagating waves 

(W*, rP, <I"* P") = (W+s. d)+, 'F+~ (r), P.+S (r)) ,i(ot-xs) (2.1) 

Here o is the vibration frequency k = n/E. is the wave number, 1, is the half-wavelength 

in the generatrix direction, and W,', (I),, q+s (r),P,&(r) are coefficients and functions to be 

determined. 
Substitution of (2.1) into (1.1) and conditions (1.4) yields a boundary value problem 

whose solution we seek in the form 

'F+' (r) :- C1'I, (kr) _I- C2’K, (kr), ‘&+z (r) = CV,, (kr) (2.2) 

Eqs.(l.l) and the last condition in (1.4) are satisfied here and we have from the first 

two conditions in (1.4) :V is the phase velocity of wave propagation) 

CI'I,' (kR,) + Cllh’,’ (kH,) = i (b’ - V,) W” (3.3) 

@I,’ (kR,) = i (V - V,) W2, l’ = o/k 

Here In(z) and K,(Z) are modified Bessel functions and Macdonald functions, respectively, 

and the plane denotes the derivative with respect to the argument. 
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Determining the unknown Cj and Cz from (2.3) and using the first relationship of (1.31, 

taking (2.1) into account, we obtain expressions for the pressure 

Ps’(~)=--pofk(V-YIil)*IFfR*,r)W1--(R,,~~WZl 
2.4) 

P+2 (r) = p,,ak (V - V,)* (I, (kr)ll,’ (kR,)) Wa 

F (‘, y) = 

2,’ (k=) R,‘ (fw) - 1, (kid R,’ w 

1”’ (kR,) A=$,’ (kRt) .-In’ (kH,) R,’ (kff~) 

Then substituting these expressions into (1.2) and the penultimate condition (1.4) by 

using (2.1), and assuming Ws to be non-zero, we obtain the equation 

Here Vhn(kR,,n) is the phase velocity ofthepropagation of primarily bending waves along 

the shell in a vacuum with a minimum /I/ equal to ~ZDg.f1 -vz/faphR,2)]‘b 

3. We examine the case of the propagation of waves with a low phase velocity along the 

shell-fluid system for small velocities of layer motion, i.e. 

( V/Vrn)2 Gg 1, (VJVd 4 1 
(3.1) 

By using the estimates (3.11, Eq.(2.5) is reduced to the form az2= 0. which corresponds 

to the solution of the problem on fluid layer motion in a cylindrical cavity with solid walls. 

we hence find 

(3.2) 

It follows from the properties of the functions i,(z) and K,(z) and their derivatives 

/2/ that ?kn is purely imaginary. Analysis of (3.2) shows that a phase velocity V with 

negative imaginary part exists for a two-layered stream V, # Va, i.e., there is a travelling 

wave with a progressing amplitude in the shell-fluid system. In other words, three is already 

a loss of system stability for low velocities V, of the layers, and the initial perturbations 

grow exponentially with time. 

If V, = V,, then the two-layered flow is transformed into a flow with constant velocity 

over a section and V= V,= V, is a real quantity, i.e., there is no exponential growth of the 

amplitudes for the low stream velocities under consideration (V< Vkri). The problem under 

investigation here reduces to the classical flutter problem. The solution of this problem for 
an infinite cylindrical shell within which there is a longitudinal potential fluid flow reduces 

to the magnitude of the critical flutter velocity V, such that I'*> l'kn. As we know, excitation 
of system selfoscillations occurs for the flow velocity V, and the initial perturbations grow 

exponentially with time /l/. If the same shell is empty, and an infinite fluid surrounds it 

by a coaxial two-layered flow, then by performing analogous calculations we obtainanexpression 

for ?ktt that differs from that presented in (3.21 by the fact that the ratio I, W&)/I,' (kfg,) 

is replaced by K,, (kR,)/K,‘(kR,) where ~<R,<H,<w. R,, R, are the shell radii and the layer 

boundaries, respectively. Even in this case y;;,, is obviously purely imaginary and therefore, 

if V, + i', then the vibrations of the shell-fluid system grow exponentially with time for 

V, 4 L'hn. If V, = 1.2, then the system loss of stability sets in for the critical stream 

velocity such that fF,>Vhn (flutter) /l/. 
The special case n: = 0 and H,, R,-m such that R, --I~,= const = II will correspond to 

the solution of the plane problem for an infinite plate on one side of which a two-layered 

flow takes place. The'near-wall layer here has the thickness W while the second layer is 
infinitely thick. Passing to the limit, we have ykO= +ifG (kHk.1). 

It is obvious that the presence of two layers in one of the fluids in a coajtial system of 

cylindrical shells and fluid flows also results in a loss of stability of the whole system 

for low flow velocities of the layers relative to each other. The system can here be in both 
a vacuum andinan infinite fluid. 

Therefore, the analysis performed enables the following deduction to be made: the presence 
of a stratified fluid flow in a shell results in instability of the shell-fluid system starting 

with low layer velocities (V* 4 Vk,‘). This system instability is generated by instability 
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of the fluid layer boundary. If the fluid flow in the shell is not stratified, then as we 
knows the system loses stability for significantly higher stream velocities (I',> V,,, flutter). 
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THROUGH THE 
HALF-STRIPS* 

A numerical solution of the problem of the incidence of plane harmonic 
waves on the interfacial boundary of two joined half-strips with different 
elastic properties is presented. A detailed analysis is given of the 
reflection and transmission of the incident wave energy through the inter- 
facial boundary, and the nature of the state of stress and strain is 
investigated in its neighbourhood. The wave fields in longitudinally 
inhomogeneous media were studied earlier in /l-3/ etc. 

1. We examine an infinite strip of thickness 2h. We connect it to an Z,Z Cartesian 
system of coordinates such that the z axis is orthogonal to the strip boundaries while the z 
axis coincides with its middle line. Let the plane boundary z=O be the line separating 
the properties of the material, and let A&T&3Pk be the elastic moduli and the density of the 
material to the left of the interfacial boundary (t<CJ,k=i) and to the right of it @>O,k= 
2). we shall assume the boundaries of the strip Z= -&h to be stress-free. 

We introduce the fcur-dimensional vector W= (u, w,u,T)~ characterizing the wave field in 
the strip into the consideration. Bere U = i&x, u) = U* are the displacement vector components 

and D = a,,, 2 = TXI are the corresponding stress tensor components. 
Let a plane normal Lamb wave of unit amplitude W~!)(z,y)l))exp[i ($)z- Qt)] be incident from 

Z= -ZC onto the interfacial boundary, where S.J = ohlc is the dimensionless frequency (c- max. 
(f&p,, f/i"zip,}), $) isthej-th wavenumber related to Q by the Rayleigh-Lamb dispersion equation 

/4/r and WY) is a four-dimensional vector whose components are determined for compression-ten- 
sion waves by the relationships 

al* + Yj" sh a& 
St=-- 

& sh a!& 

The superscript k= 1,2 in parentheses indicates that the quantities belong to themedium 
located, respectively, to the left or the right of the interfacial boundary of the material 
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